Net reclassification indices for evaluating risk prediction instruments: a critical review.

نویسندگان

  • Kathleen F Kerr
  • Zheyu Wang
  • Holly Janes
  • Robyn L McClelland
  • Bruce M Psaty
  • Margaret S Pepe
چکیده

Net reclassification indices have recently become popular statistics for measuring the prediction increment of new biomarkers. We review the various types of net reclassification indices and their correct interpretations. We evaluate the advantages and disadvantages of quantifying the prediction increment with these indices. For predefined risk categories, we relate net reclassification indices to existing measures of the prediction increment. We also consider statistical methodology for constructing confidence intervals for net reclassification indices and evaluate the merits of hypothesis testing based on such indices. We recommend that investigators using net reclassification indices should report them separately for events (cases) and nonevents (controls). When there are two risk categories, the components of net reclassification indices are the same as the changes in the true- and false-positive rates. We advocate the use of true- and false-positive rates and suggest it is more useful for investigators to retain the existing, descriptive terms. When there are three or more risk categories, we recommend against net reclassification indices because they do not adequately account for clinically important differences in shifts among risk categories. The category-free net reclassification index is a new descriptive device designed to avoid predefined risk categories. However, it experiences many of the same problems as other measures such as the area under the receiver operating characteristic curve. In addition, the category-free index can mislead investigators by overstating the incremental value of a biomarker, even in independent validation data. When investigators want to test a null hypothesis of no prediction increment, the well-established tests for coefficients in the regression model are superior to the net reclassification index. If investigators want to use net reclassification indices, confidence intervals should be calculated using bootstrap methods rather than published variance formulas. The preferred single-number summary of the prediction increment is the improvement in net benefit.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of Bayesian and Frequentist Methods in Estimating the Net Reclassification and Integrated Discrimination Improvement Indices for Evaluation of Prediction Models: Tehran Lipid and Glucose Study

Introduction: The Frequency-based method is commonly used to estimate the Net Reclassification Improvement (NRI)- and Integrated Discrimination Improvement (IDI) indices. These indices measure the magnitude of the performance of statistical models when a new biomarker is added. This method has poor performance in some cases, especially in small samples. In this study, the performance of two Bay...

متن کامل

Extreme lipoprotein(a) levels and improved cardiovascular risk prediction.

OBJECTIVES The study tested whether extreme lipoprotein(a) levels and/or corresponding LPA risk genotypes improve myocardial infarction (MI) and coronary heart disease (CHD) risk prediction beyond conventional risk factors. BACKGROUND Elevated lipoprotein(a) levels cause MI and CHD. Levels are primarily determined by variation in the LPA gene. METHODS We followed 8,720 Danish participants i...

متن کامل

Problems with risk reclassification methods for evaluating prediction models.

For comparing the performance of a baseline risk prediction model with one that includes an additional predictor, a risk reclassification analysis strategy has been proposed. The first step is to cross-classify risks calculated according to the 2 models for all study subjects. Summary measures including the percentage of reclassification and the percentage of correct reclassification are calcul...

متن کامل

Practice of Epidemiology Problems With Risk Reclassification Methods for Evaluating Prediction Models

For comparing the performance of a baseline risk prediction model with one that includes an additional predictor, a risk reclassification analysis strategy has been proposed. The first step is to cross-classify risks calculated according to the 2 models for all study subjects. Summary measures including the percentage of reclassification and the percentage of correct reclassification are calcul...

متن کامل

Evaluating performance of the spetzler-martin supplemented model in selecting patients with brain arteriovenous malformation for surgery.

BACKGROUND AND PURPOSE Our recently proposed point scoring model includes the widely-used Spetzler-Martin (SM)-5 variables, along with age, unruptured presentation, and diffuse border (SM-Supp). Here we evaluate the SM-Supp model performance compared with SM-5, SM-3, and Toronto prediction models using net reclassification index, which quantifies the correct movement in risk reclassification, a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Epidemiology

دوره 25 1  شماره 

صفحات  -

تاریخ انتشار 2014